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Abstract

Drug-drug interaction (DDI) prediction is a pivotal task in biomedi-
cal research. Emerging multimodal approaches that integrate graph
neural networks (GNNs) and large language models (LLMs) have
gained traction, as GNNs capture molecular structures while LLMs
provide a rich biomedical context. However, real-world DDI data
often exhibit distribution shifts across structural and textual dimen-
sions, stemming from variations in molecular scaffolds, drug sizes,
and assay conditions. Existing methods assume an independent and
identically distributed (I.I.D.) setting, failing to handle such shifts
primarily due to there key limitations: (i) the entanglement of core
interaction motifs with incidental structural features; (ii) inflexible
message-passing GNN architectures ill-suited for diverse drug pairs;
and (iii) underutilized biomedical knowledge in LLMs for capturing
pairwise interaction semantics. These limitations highlight the need
for a disentangled, dynamic, and pairwise-aware modeling strategy
to achieve out-of-distribution generalized DDI prediction. To solve
this problem, we propose DyNamic Pairwise Architecture Search
for Generalizable Drug-Drug Interaction LLM (DyNAS-DDI), a
novel framework that dynamically adapts network architectures
for each molecular pair and integrates biomedical knowledge from
LLMs to improve generalization under distribution shifts. Specif-
ically, we propose three modules: (i) Motif-driven disentangled
molecule encoding, which disentangles molecular representations
into distinct motif-based features while preserving key structural
signals through a self-supervised graph encoder; (ii) Attention-
based pairwise neural architecture search, where multi-head at-
tention enriches molecular features to guide a dynamic search
mechanism that adaptively optimizes message passing for diverse
interaction types; and (iii) retrieval-augmented molecular instruc-
tion tuning, where external biomedical knowledge is incorporated
to improve interpretability and enable reasoning for unseen drug
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interactions. Extensive experiments on four datasets for DDI with
out-of-distribution (OOD) splits demonstrate our method’s superior
generalization abilities under distribution shifts. Our code can be
available at https://github.com/EkkoXiao/DyNAS-DDI.
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1 Introduction

Drug-drug interaction (DDI) is a fundamental problem in biomedi-
cal research. Predicting molecular interactions is crucial for drug
screening, combination drug design, and disease treatment[21, 23,
54] due to their impact on patient safety and treatment efficacy[36,
42, 48]. As a quintessential multimodal problem, DDI prediction
requires an understanding of both biomedical text and molecular
graph structures. Recently, multimodal approaches that integrate
graph neural networks (GNNs) and large language models (LLMs)
have gained increasing attention. GNNs can capture molecular
topology, while LLMs extract rich semantic features from biomedi-
cal literature[41, 47]. By combining structural and textual informa-
tion, this fusion enhances the understanding of molecular interac-
tions, leading to more accurate and comprehensive predictions.

In real-world DDI prediction tasks, distributional shifts between
training and deployment data often arise due to the introduction
of novel drugs and evolving experimental conditions. As a result,
DDI datasets are frequently subject to out-of-distribution (OOD)
scenarios, where differences in assay conditions, chemical scaf-
folds, and molecular sizes lead to substantial inconsistencies across
datasets [18]. For instance, newly discovered drugs frequently ex-
hibit new structural properties or are tested under conditions that
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differ greatly from historical data[50, 59]. These distribution shifts
pose fundamental challenges in aligning new data with previously
observed distributions, making it difficult to maintain consistency
across different settings.

However, most existing DDI learning models assume an indepen-
dent and identically distributed (I.I.D.) setting. This oversimplifica-
tion hinders their ability to distinguish core interaction motifs from
incidental molecular features, adapt GNN architectures to diverse
drug pairs, and incorporate broader biomedical context beyond the
training interaction data—ultimately leading to poor generalization
in OOD scenarios.

To bridge this gap, we aim to improve out-of-distribution drug-
drug interaction (OOD-DDI) prediction in this work from three key
perspectives. First, we seek to identify core interaction patterns that
are invariant across distributions. Second, to enhance the adaptabil-
ity of GNNs to diverse drug pairs, we aim to design architectures
that can dynamically adjust to molecular variation. Third, to enrich
the model’s biomedical understanding beyond the training data,
we explore the integration of external domain knowledge through
LLMs. However, achieving these goals is highly non-trivial and
presents the following key challenges:

• How to disentangle core interaction motifs from overall molec-
ular representations, as motifs often co-occur with certain scaf-
folds, leading to biased learning where models may conflate
general structural properties with motif-driven interactions?

• How to implement a flexible GNN architecture for DDI pre-
diction and tailor a mechanism that can dynamically modify
propagation rules without overfitting to specific interaction
types, thus achieving careful balancing between adaptability
and generalization across unseen drug pairs?

• How to effectively integrate the extensive biomedical knowl-
edge in LLMs into DDI prediction while ensuring that the model
remains robust to OOD drug interactions?

To address these challenges, we propose DyNamic Pairwise
Architecture Search for Generalizable Drug-Drug Interaction LLM
(DyNAS-DDI), a unified framework that dynamically adapts net-
work architectures for each molecular pair and integrates biomed-
ical knowledge from LLMs to improve generalization under dis-
tribution shifts. By automatically adjusting the model’s informa-
tion propagation rules based on disentangled interaction contexts,
DyNAS-DDI enhances its ability to generalize effectively to unseen
data distributions.

Specifically, we introduce Motif-driven disentangled molecule
encoding, which disentangles a molecule’s representation into dis-
tinct motif-based features rather than learning an entangled global
structure. A self-supervised graph encoder trains the model to
capture these motifs while preserving key structural influences.
Using the obtained encoded representations, we propose Attention-
based pairwise neural architecture search, where molecular features
are enriched using multi-head attention[53]. These features then
guide a dynamic search mechanism that optimizes message-passing
strategies for different molecule pairs, allowing flexible adaptation
to diverse interaction types. Furthermore, to improve molecular
reasoning, we introduce Retrieval-augmented molecular instruc-
tion tuning. By retrieving and integrating external drug-related
biomedical knowledge, the model enhances its interpretability and

improves its reasoning for novel drug interactions. We evaluate our
method on four DDI datasets under two OOD partitioning schemes:
scaffold-based and size-based splits. Extensive results show that
our approach generalizes well under these distribution shifts. Addi-
tionally, in-depth ablation studies demonstrate the contribution of
each module to the overall performance. The main contributions of
this paper are summarized as follows:

• We investigate the out-of-distribution phenomenon in drug-
drug interaction prediction, an underexplored problem in liter-
ature. To the best of our knowledge, we are the first to address
OOD DDI prediction within GNN-LLM multimodal integration.

• We propose a novel framework comprising three key mod-
ules: (i) Motif-driven disentangled molecule encoding, which
enhances generalization by capturing motif-level features; (ii)
Attention-based pairwise neural architecture search, which dy-
namically adapts message-passing strategies for diverse molec-
ular interactions; and (iii) Retrieval-augmented generalizable
molecular instruction tuning, which leverages external biomed-
ical knowledge to improve reasoning and interpretability.

• We conduct experiments on four DDI datasets with two differ-
ent distribution shift-based splits. Extensive results demonstrate
that our method performs effectively in handling OOD drug
interaction pairs.

2 Related Work

2.1 Drug-Drug Interaction Prediction

Traditional DDI prediction methods began with shallowmodels like
logistic regression[15], which rely on handcrafted features. As deep
learning emerged,models such as DeepDDI[49] andMatchMaker[20]
introduced neural architectures to capture biological and sequen-
tial drug features. More advanced approaches like MHCADDI[5]
and MDF-SA-DDI[31] further improved prediction by incorporat-
ing substructure-level representations, attention mechanisms, and
multi-source feature fusion, highlighting a shift toward richer and
more adaptive modeling frameworks. Recently, GNNs have gained
prominence in DDI prediction by leveraging molecular structures
directly. Methods like SSI-DDI[37] and DSN-DDI[29] utilize graph
attention networks to capture substructure-level interactionswithin
and between drug pairs. Others, such as CGIB[22] and CIGIN[40],
incorporate dynamic substructure adaptation and message-passing
frameworks to model chemical behavior and reactivity. Techniques
like GCNNs with attention-based pooling[67] further enhance in-
terpretability and predictive accuracy.

With the rapid advancement of LLMs, there has been a growing
emphasis on integrating textual modalities with structured drug in-
formation. Early efforts primarily focused on single-molecule tasks,
such as molecule–text retrieval [10] and molecule captioning[8],
where LLMs demonstrated strong capabilities in aligning chemical
structures with natural language descriptions[33, 39, 51, 66]. Build-
ing on this progress, emerging studies[11] have begun to extend
such approaches to more complex settings like drug–drug interac-
tion prediction. However, the aforementioned approaches are rarely
designed to handle out-of-distribution scenarios in DDI prediction
and lack effective mechanisms to jointly leverage LLMs and GNNs
for robust generalization.
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2.2 Graph Neural Architecture Search

Graph Neural Architecture Search (GNAS) extends the principles of
Neural Architecture Search (NAS) to the graph domain, aiming to
automatically discover effective GNN architectures tailored to spe-
cific tasks [13, 25, 26, 46, 60, 64]. Early GNAS methods explored dis-
crete search spaces using reinforcement learning [69] or evolution-
ary algorithms [58], which often incurred high computational costs.
To address this, differentiable NAS techniques such as DARTS [30,
32], GRACES [45], and others [3, 4, 16, 43, 65, 68] have been pro-
posed, enabling a more efficient search through over-parameterized
supernets and continuous relaxation. Recent advances in GNAS
span multiple directions, including robustness under distribution
shifts [14, 28], multi-modal architecture design [57, 62], and scalable
search for large graphs [44, 63].

In the context of DDI prediction, GNAS has shown promise in
automatically learning task-specific molecular graph encoders. For
example, AutoDDI [12] leverages NAS to design specialized GNN
architectures that capture drug structural information more effec-
tively, and CSSE-DDI[7] demonstrates the potential of applying
NAS to optimize both subgraph selection and encoding strategies
for improved interpretability and performance. However, existing
methods still lack the ability to dynamically adapt architecture
search results to specific drug pairs, and no current approaches
integrate NAS with LLM-based modality fusion to address the chal-
lenges of OOD DDI scenarios.

3 Method

In this section, we present a thorough description of our DyNAS-
DDI. Section 3.1 introduces the problem formalization, laying the
foundation for our approach. Sections 3.2 and 3.3 elaborate on
motif-driven disentangled molecule encoding and attention-based
pairwise neural architecture search, respectively. Section 3.4 dis-
cusses retrieval-augmented generalizable molecular instruction
tuning, and finally, Section 3.5 provides a comprehensive overview
of the entire process.

3.1 Problem Formalization

Drug-drug interaction (DDI) refers to the effect that occurs when
two drugs interact, potentially altering their efficacy or causing
adverse effects. The problem can be formulated as follows:

Given a set of drug molecules D = {𝑑1, 𝑑2, . . . , 𝑑𝑛} and their
interaction labels 𝑌 , the goal is to learn a predictive function 𝑓 :
(𝑑𝑖 , 𝑑 𝑗 ) → 𝑦, where 𝑑𝑖 , 𝑑 𝑗 ∈ 𝐷 represent two drug molecules, and
𝑦 ∈ 𝑌 denotes their interaction type. The function 𝑓 aims to model
whether a given drug pair interacts (binary classification) and, if so,
to predict the nature of their interaction (multi-class classification).
In the context of OOD DDI, we partition the distribution space of
all drug molecules based on factors such as molecular scaffolds,
drug sizes, or assay conditions. Let D𝐼𝐷 be the subset of drug
molecules that belong to a specific in-distribution (ID) denoted by
𝑃𝐼𝐷 (𝑑), while the OOD drug molecules form the set D𝑂𝑂𝐷 , which
consists of molecules that do not belong to 𝑃𝐼𝐷 (𝑑). These two sets
are disjoint, i.e.,D𝐼𝐷 ∩ D𝑂𝑂𝐷 = ∅, and their union covers the
entire drug space: D𝐼𝐷 ∪ D𝑂𝑂𝐷 = D. We define the training set
as consisting of molecular pairs sampled from an D𝐼𝐷 , while the

validation and test sets contain D𝑂𝑂𝐷 samples:

Ttrain = {(𝑑𝑖 , 𝑑 𝑗 ) | 𝑑𝑖 , 𝑑 𝑗 ∈ DID}
Tvalid ∪ Ttest = {(𝑑𝑖 , 𝑑 𝑗 ) | 𝑑𝑖 ∈ DOOD ∨ 𝑑 𝑗 ∈ DOOD}

(1)

3.2 Motif-driven Disentangled Molecule

Encoding

To capture interaction-invariant features and mitigate spurious cor-
relations, we introduceMotif-driven disentangled molecule encoding,
which separates core interaction motifs from global molecular con-
text. This module consists of two components: Disentangled motif
embedding and Self-supervised molecule encoding.

Disentangled Motif Embedding. Extracting informative molec-
ular substructures is essential for robust drug-drug interaction
modeling[24]. Existing graph-based methods often rely on sub-
graph selection techniques that use heuristic or learning-based
methods to select critical nodes and edges. However, these methods
may yield structurally disconnected or arbitrary subgraphs, espe-
cially in molecular contexts where functional groups play a cru-
cial role. To generate more interpretable and chemically valid mo-
tifs, we adopt the BRICS algorithm[6], which partitions molecules
into meaningful fragments guided by established reaction mech-
anisms. A molecular graph is represented as G = (V, E), where
V and E denote the set of atoms and chemical bonds, respectively.
After applying the BRICS decomposition, we obtain a motif set:
MG = {𝑀G,1, 𝑀G,2, . . . , 𝑀G,𝑚}, where each 𝑀G,𝑖 is a subgraph
of G. We then select the top-𝑘 motifs based on molecular weight:
M (𝑘 )

G = {𝑀G,𝑖 | 𝑀G,𝑖 ∈ MG, rank(𝑤 (𝑀G,𝑖 )) ≤ 𝑘}.
For each𝑀G

𝑖
∈ M (𝑘 )

G , we compute its PageRank[38] importance
within the molecular graph G = (V, E). The PageRank score of
node 𝑣 is as follows:

PR(𝑣) = 𝛼
∑︁

𝑢∈N(𝑣)

PR(𝑢)
|N (𝑢) | + (1 − 𝛼)𝑝 (𝑣) (2)

where 𝛼 is the damping factor, N(𝑣) denotes the set of neighbor
nodes, and 𝑝 (𝑣) is the prior probability distribution. The disentan-
gled motif embedding is then aggregated as:

R (𝑘 )
G = {𝑅(𝑀G,𝑖 ) | 𝑀G,𝑖 ∈ M (𝑘 )

G }, 𝑅(𝑀G,𝑖 ) =
∑︁

𝑣∈𝑀G,𝑖

PR(𝑣) (3)

Through this PageRankmethod, motif importance is dynamically
assigned based on their connectivity and influence in the molecular
graph, allowing the model to capture essential interaction patterns
and improve adaptability to out-of-distribution drug combinations.

Self-supervisedMolecule Encoding. Wepropose amulti-view graph
representation framework that integrates heterogeneous GNNs and
readout functions to encode molecular structures. Formally, given
the molecular graph G = (V, E), the encoding process is defined
as:

zG = Readout
({


𝐾

𝑘=1
GNN𝑘 (𝑣 ;G)

���� 𝑣 ∈ V
})

(4)
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Figure 1: The overall framework of DyNAS-DDI. It processes molecular graphs through two stages:Motif-Driven disentangled
molecule encoding extracts structural patterns using self-supervised learning, and attention-based pairwise neural architecture
search dynamically constructs task-specific graph neural networks. Then, projectors align the obtained graph features with

large language model requirements. SMILES sequences are independently tokenized and combined with projected embeddings

through the LLM backbone. Moreover, we design retrieval-augmented molecular instruction tuning to enhance molecular

reasoning in out-of-distribution scenarios.

where



𝐾
𝑘=1

denotes the concatenation of node features from 𝐾

independent GNNs. To align the molecular encoding with the dis-
entangled motif embedding, we disentangle zG into multiple com-
ponents, one representing the global structural information, and
𝑘 components each corresponding to a motif in M (𝑘 )

G . Formally,
let zG ∈ R𝑑 be decomposed as: zG =

[
sG,0∥sG,1∥sG,2∥ . . . ∥sG,𝑘

]
,

sG,𝑖 ∈ R𝑑/(𝑘+1) . Each component s𝑖 is trained to match the normal-
ized PageRank score of motif𝑀G,𝑖 . We compute the self-supervised
loss Lssl,G as:

Lssl,G =

𝑘∑︁
𝑖=1



𝜙 (sG,𝑖 ) − 𝑅(𝑀G,𝑖 )


 (5)

where 𝜙 : R𝑑/(𝑘+1) → R is a learnable projection head mapping
component embeddings to scalar scores. In drug-drug interaction
scenarios, the finalLssl is implemented as the aggregation ofLssl,G
for each drug in the pair. Unlike methods relying on holistic graph
embeddings, our motif-disentangled representation captures trans-
ferable interaction mechanisms and enables robust prediction when
molecular topologies deviate from training distributions.

3.3 Attention-based Pairwise Neural

Architecture Search

To dynamically design architectures that adapt to pairwise molec-
ular interactions, we propose Attention-based pairwise neural ar-
chitecture search. This approach integrates three key components:
Attention-based interaction modeling, Operation embedding space
construction, and Pairwise adaptive architecture search.

Attention-based Interaction Modeling. Given drug pair encod-
ings zG, zG′ ∈ R𝑑 , we model their interaction via multi-head
attention[53] that explicitly attends to motif-disentangled com-
ponents:

z∗G = zG + FFN
(
Amulti

(
Q,K,V

) )
(6)

where query vector Q = W𝑄 [sG,0∥sG,1 . . . ∥sG,𝑘 ], key and value
vector K,V = W𝐾 [sG′,0∥sG′,1∥ . . . ∥sG′,𝑘 ]. The mechanism is the
same with zG′ to produce z∗G′ . This design emphasizes motif-level
compatibility between drugs, where attention weights reflect phar-
macophore complementarity — a key factor in generalizing out-of-
distribution DDIs with novel motif combinations.

Operation Embedding Space Construction. To dynamically adapt
the GNN architecture to molecular substructure patterns, we pro-
pose an embedding-guided NAS algorithm. The core idea is to
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project the interaction-aware drug encoding z∗G onto a learnable
operation space, determining the optimal GNN layer operations
based on motif-driven compatibility.

For each GNN layer 𝑙 , we define a candidate operation set O (𝑙 ) =
{op𝑙1, op

𝑙
2, . . . , op

𝑙
𝑚}, where each operation op𝑙

𝑖
represents a specific

message-passing mechanism. Each operation is associated with a
trainable prototype vector e(𝑙 )

𝑖
∈ R𝑑op for all op𝑙

𝑖
∈ O (𝑙 ) . These

vectors form an operation embedding space E (𝑙 ) = {e(𝑙 )1 , . . . , e(𝑙 )𝑚 },
initialized randomly and optimized during training. Moreover, to
prevent these operation vectors from collapsing into a narrow re-
gion of the embedding space, we introduce a repulsive loss term
that encourages uniform dispersion of e(𝑙 )

𝑖
vectors. For each layer

𝑙 , we define the dispersion loss as:

L (𝑙 )
disp =

2
𝑚(𝑚 − 1)

𝑚−1∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

e(𝑙 )
𝑖

· e(𝑙 )
𝑗

∥e(𝑙 )
𝑖

∥2∥e(𝑙 )𝑗 ∥2
(7)

The final loss Ldisp is thus computed by averaging L (𝑙 )
disp from each

layer.

Pairwise Adaptive Architecture Search. At layer 𝑙 , the probability
of selecting operation op𝑖 is determined by the similarity between
z∗G and e(𝑙 )

𝑖
:

𝑝 (𝑙 ) (op𝑖 ) =
exp⟨z∗G, e

(𝑙 )
𝑖

⟩∑𝑚
𝑗=1 exp⟨z∗G, e

(𝑙 )
𝑗

⟩
(8)

where ⟨·, ·⟩ denotes dot product measuring embedding-operation
compatibility. The final operation at layer 𝑙 is implemented as a
weighted combination:

h(𝑙+1)G =

𝑚∑︁
𝑖=1

𝑝 (𝑙 ) (op𝑖 ) · op𝑖
(
h(𝑙 )G

)
(9)

in which h(𝑙 )G denotes the node features at layer 𝑙 . This soft-selection
strategy enables end-to-end differentiable optimization of both ar-
chitecture weights and GNN parameters. This projection ⟨z∗G, e

(𝑙 )
𝑖

⟩
encodes motif-specific interaction patterns, guiding the NAS to
prefer operations that can adapt to OOD drug pairs by emphasiz-
ing transferable message-passing schemes and suppressing noisy
connections through operation dropout implicitly via low selection
probabilities.

During architecture customization, operation selection proba-
bilities are first computed via attention weighting based on the
pair’s interaction features, thus constructing unique context-aware
computational paths for each molecule. The resulting hG and hG′

encapsulate both intrinsic molecular characteristics and structural
adaptation information relative to their interaction partner.

3.4 Retrieval-Augmented Molecular Instruction

Tuning

To strengthen molecular reasoning under real-world knowledge
constraints, we implement a targeted retrieval mechanism that se-
lectively acquires partial but critical drug property profiles. Specifi-
cally, our system queries domain-specific databases (for example,

PubChem[19], DrugBank[56]) to retrieve these sparse yet biochem-
ically pivotal attributes. Upon retrieving these key drug attributes,
we design structured instruction prompts that integrate molecu-
lar structures with their corresponding property profiles. During
instruction tuning, the model then learns to predict missing proper-
ties given the structural and textual prompts, thereby enriching its
understanding and reasoning of drug attributes. This phase employs
a standard causal language modeling objective:

Linst = E(𝑥,𝑦)∼D

[
−

𝑇∑︁
𝑡=1

𝑦𝑡 log 𝑝𝜃 (𝑦𝑡 |𝑥≤𝑡 )
]

(10)

where 𝑥 represents the structured instruction prompts, while 𝑦
denotes target property values. The model processes this combined
input through the transformer’s self-attention layers to predict
target sequences autoregressively. For DDI classification training,
Ltarget follows the same formulation, where 𝑥 utilizes a different
prompt format and 𝑦 represents interaction text labels. This con-
sistency preserves the model’s pre-trained biochemical reasoning
capabilities while adapting to the new task. Full prompt designs
appear in Section 3.5.

For this process, the composite loss function combines three key
objectives:

L = Istage · Linst + (1 − Istage) · Ltarget + 𝛼Ldisp + 𝛽Lssl (11)

where Istage is an indicator function (1 for instruction tuning, 0
for DDI task training). This unified process strengthens the model’s
ability to generalize to out-of-distribution scenarios, enabling it to
apply its biochemical knowledge more effectively.

3.5 Overall Framework

In this section, we will provide a detailed description of the overall
model architecture and training process. The overall architecture
of our proposed framework is illustrated in Figure 1.

Data Propagation. For a drug pair denoted as (𝑑1, 𝑑2), the Simpli-
fied Molecular Input Line Entry System (SMILES) representations
are given as SMILES1 and SMILES2 respectively, and the molecu-
lar graph structures are formally represented as G1 and G2. The
molecular graphs are processed through motif-driven disentangled
molecule encoding to derive self-supervised disentangled repre-
sentations zG1 and zG2 . These representations subsequently guide
attention-based pairwise neural architecture search to dynamically
determine architectural weights {𝑝 (op𝑖 )} for candidate graph op-
erations {op𝑖 }. The resultant GNN architecture then hierarchically
aggregates structure patterns from G1 and G2, ultimately yielding
adaptive graph-level embeddings hG1 and hG2 through layer-wise
attentive message passing and dynamic operation fusion.

To project the dynamic graph representations into the language
model’s latent space, we employ BERT-based projectors [27] (𝑓pro1,
𝑓pro2) enhanced with cross-attention mechanisms, transforming
them into LLM-compatible embeddings E1 and E2 that preserve
graph-structured semantics while aligning with the LLM’s hidden
dimension. To incorporate sequential molecular information, the
SMILES sequences are tokenized through the LLM’s native encoder
into discrete tokens S1 and S2. The integrated multimodal sequence
[E1, S1, E2, S2] formatted with prompt P is processed through an



MM ’25, October 27–31, 2025, Dublin, Ireland Linxin Xiao, Xin Wang, Zeyang Zhang, Yang Yao, and Wenwu Zhu

Table 1: OOD Dataset Splitting Statistics based on Scaffold and Size.

Dataset Threshold SCAFFOLD Splitting SIZE Splitting
Scaffold(Mol) Size(Da) DID DOOD Dtrain Dvalid Dtest DID DOOD Dtrain Dvalid Dtest

ChChMiner 10 260 802 157 23019 5325 5325 764 195 22698 5485 5485
DeepDDI 8 250 1319 385 207941 54327 54327 1323 381 202077 57259 57259
ZhangDDI 7 245 442 102 75389 19291 19291 443 101 75876 19048 19048
Drugbank 9 245 1282 422 127525 32172 32173 1323 381 129431 31219 31220

LLM backbone galactica-1.3b[52] pretrained on scientific corpora
following MolTC[11].

Backbone prompt:
The first drug is [START_SMILES]<SMILES1>[END_SMILES]<Embed1>
The second drug is [START_SMILES]<SMILES2>[END_SMILES]<Embed2>

Input prompt:  What are the 
descriptions of the two dr-
ugs? 
Target answer:  The first 
drug is <drugname1> and 
has property <property1>. 
The second drug is <drug-
name2> and has property 
<property2>.

Input prompt:  Do the two drugs exhibit drug-
drug interactions?
Target answer:  Yes./No.

Input prompt:  What is the drug-drug interac-
tion of the two drugs?
Target answer:  <CAT001> Drug1 may increa-
se the photosensitizing activities of Drug2.

Instruction Tuning Stage Binary Classification Training Stage

Multi-class Classification Training Stage

Figure 2: Prompt design across different stages. The back-

bone prompt provides consistent molecular identifiers and

base instruction templates. During instruction tuning, we

incorporate drug property profiles retrieved via RAG as pre-

diction targets. For binary classification tasks, single-token

outputs (Yes./No.) are employed, while multi-class classifi-

cation introduces specialized tokens (<CATXXX>) paired with

detailed reaction type descriptions as targets.

Training Pipeline. Our training procedure consists of two syn-
ergistic phases. During the instruction tuning phase, we employ
retrieval-augmented molecular instruction tuning to enrich the
LLM’s biochemical knowledge base with pre-designed structured
prompts {𝑃𝑖 } to integrate molecular graphs with drug property
corpora retrieved from authoritative databases. Subsequently, the
domain adaptation phase utilizes DDI datasets with task-oriented
prompts {𝑃𝑡 }, where the complete data propagation pipeline guides
the model to generate classification outputs (binary or multi-class).
This phased approach ensures that the model first establishes funda-
mental biochemical comprehension before specializing inmolecular
interaction reasoning. Our prompt design is illustrated in Figure 2.

4 Experiments

To rigorously evaluate our model’s capability in both ID and OOD
scenarios, we conduct comprehensive experiments across four
benchmark DDI datasets. We adopt both scaffold-based and size-
stratified splitting to partition each dataset into ID and OOD sets,
ensuring that structurally distinct molecules in the OOD set never
appear in training. Extensive comparisons with various categories

of state-of-the-art baselines demonstrate our method’s superior
performance across all evaluation settings.

4.1 Experimental Settings

Dataset Construction. Following the methodology defined in Sec-
tion 3.1, we construct evaluation datasets using four established DDI
benchmarks: ChChMiner[35], DeepDDI[49], ZhangDDI[61], and
DrugBank[56]. For each dataset D, we implement dual threshold-
based partitioning: (i) scaffold-based splitting via Bemis-Murcko[2]
frameworks with molecular structure thresholds, and (ii) size-based
splitting using molecular weight thresholds. Molecules exceeding
the thresholds are assigned to DID, while those below form DOOD.
This is done to ensure distinct structural and physicochemical
distributions between the two sets. The data is then divided into
train/valid/test subsets while maintaining an approximately 4:1:1
ratio through stratified sampling as specified in Section 3.1. Detailed
dataset information is in Table 1.

Baselines. We conduct comprehensive benchmarking against
three categories of baseline methods: (i) Conventional GNN mod-
els: CIGIN[40], SSI-DDI[37], CMRL[24], CGIB[22], DSN-DDI[29]
and DeepDDS[55]; (ii) Non-GNN machine learning approaches:
DeepDDI[49], MHCADDI[5] and MatchMaker[20] utilizing tradi-
tional feature engineering; (iii) State-of-the-art LLM-based meth-
ods: including Galactica[52], MolT5[9], and MolTC[11]. This multi-
paradigm comparison ensures rigorous evaluation across different
architectural philosophies and learning mechanisms.

Metrics. We employ three standard classification metrics: (i) Ac-
curacy, measuring overall prediction correctness, (ii) Area Under
the Receiver Operating Characteristic Curve (AUC-ROC) evaluating
model discrimination ability across all classification thresholds, and
(iii) F1-score balancing precision and recall for unbalanced interac-
tion classes.

Details. Our optimization framework employs AdamW[34] opti-
mizer with 𝜖 = 1e−8 and weight decay regularization (𝜆 = 0.05) to
prevent overfitting. The learning rate follows a hybrid scheduling
strategy: linearly warming up from 1e−6 to 1e−4, then decaying
through cosine annealing to 1e−5. Parameter groups are assigned
separate learning rates, but all follow the same global scheduling
curve. For parameter-efficient adaptation, we integrate Low-Rank
Adaptation (LoRA)[17], configuring trainable matrices (𝑟 = 16) on
Galactica’s query/key projections and fully connected layers, while
freezing 99.8% of the base LLM parameters. The cross-modal pro-
jectors are initialized using SciBERT embeddings[1]. The majority
of our experiments are performed using six NVIDIA GeForce RTX
3090 GPUs (24GB). More details are illustrated in the Appendix.
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Table 2: Comparative performance on scaffold-based and size-based OOD DDI prediction tasks. The top-performing method

is highlighted in bold, with second-best results underlined across all evaluation metrics. We also report the percentage

improvement of these metrics compared to the second-best performing method.

Setting Model ChChMiner ZhangDDI DeepDDI DrugBank
Acc ↑ AUC ↑ F1 ↑ Acc ↑ AUC ↑ F1 ↑ Acc ↑ AUC ↑ F1 ↑ Acc ↑ AUC ↑ F1 ↑

Scaffold-Based OOD DDI Prediction Tasks

GNN-Based

CIGIN 63.94 69.29 67.70 63.81 58.77 16.72 48.88 74.10 32.10 47.82 80.78 43.90
SSI-DDI 55.13 57.39 46.86 53.36 54.45 50.38 53.80 55.03 53.28 57.46 75.96 54.19
DSN-DDI 51.93 52.93 52.40 43.12 39.13 21.37 54.42 57.06 50.15 51.00 73.36 58.38
CMRL 67.29 72.23 70.64 66.72 68.75 42.37 66.83 74.27 66.06 52.07 77.41 47.75
CGIB 66.82 71.82 70.32 68.05 68.21 46.01 66.15 72.55 66.50 51.95 78.35 48.32
DeepDDS 65.69 68.27 67.70 63.32 53.46 49.11 65.77 71.06 65.15 36.46 47.23 19.49

ML-Based
DeepDDI 64.26 69.42 66.63 67.95 69.61 51.26 69.49 76.26 69.37 54.25 79.61 50.53
MHCADDI 53.78 51.58 68.83 63.37 53.92 49.17 51.18 55.87 35.02 16.12 0.50 0.09
MatchMaker 68.81 70.99 72.07 64.58 66.80 36.45 65.49 72.01 65.46 14.13 48.34 0.03

LLM-Based
Galactica 75.12 83.43 74.96 69.51 72.86 66.00 69.36 76.89 69.17 48.59 75.98 44.48
MolT5 52.53 50.01 34.44 54.59 50.50 54.23 51.11 50.36 34.58 9.11 50.22 10.99
MolTC 72.57 82.88 76.47 68.51 71.70 54.60 68.29 74.90 66.97 52.23 79.81 50.02
DyNAS-DDI 79.44 87.22 79.35 72.93 77.58 72.54 71.48 78.94 72.62 64.86 88.86 61.27

%↑ +5.75% +4.54% +3.77% +4.92% +6.48% +9.91% +2.86% +2.67% +4.69% +12.88% +10.00% +4.95%

Size-Based OOD DDI Prediction Tasks

GNN-Based

CIGIN 66.89 72.12 66.05 63.00 61.02 48.70 44.83 71.19 27.75 48.40 81.91 44.39
SSI-DDI 58.95 63.20 53.94 55.04 56.84 53.30 53.76 54.91 53.46 58.72 71.98 65.20
DSN-DDI 53.89 56.94 38.66 53.88 56.92 44.34 55.12 58.07 51.59 34.98 76.58 36.64
CMRL 74.19 82.86 77.83 69.04 72.10 50.18 71.14 78.77 73.61 56.01 80.92 53.24
CGIB 71.38 78.85 75.25 65.33 67.07 38.23 69.91 76.35 70.70 52.82 79.83 48.72
DeepDDS 61.28 64.41 61.43 66.19 66.29 64.84 69.25 72.52 68.88 39.07 42.05 21.95

ML-Based
DeepDDI 64.56 69.79 64.28 66.85 70.55 66.90 71.81 78.17 70.58 59.46 84.69 55.86
MHCADDI 59.15 54.82 52.61 62.75 54.01 50.44 59.95 65.24 53.53 17.25 47.04 17.72
MatchMaker 63.12 65.61 61.52 67.36 68.99 63.60 66.53 73.74 66.26 18.68 47.66 11.95

LLM-Based
Galactica 79.48 88.50 79.23 69.88 74.33 69.31 65.40 70.77 65.32 53.23 80.37 49.67
MolT5 56.58 49.76 36.14 47.96 50.00 48.45 55.17 50.51 39.23 37.97 48.66 22.29
MolTC 77.73 86.82 80.45 67.57 72.37 67.66 71.06 78.02 71.00 56.34 80.33 53.97
DyNAS-DDI 81.74 90.62 83.16 76.62 83.61 75.95 73.56 80.81 79.76 67.97 90.23 65.64

%↑ +2.84% +2.40% +3.37% +9.65% +12.48% +9.58% +2.44% +2.59% +8.35% +14.31% +6.54% +0.67%

Our training regimen consists of an initial 10-epoch instruction
tuning followed by a 50-epoch task-specific fine-tuning for DDI
classification. For performance measurement, we compute predic-
tion scores by applying softmax normalization over the LLM’s full
vocabulary logits to derive the AUC-ROC metric. Categorical ac-
curacy and F1 scores are determined through strict token-level
matching between generated responses and target labels.

4.2 Scaffold-based Interaction Results

Our experimental results demonstrate DyNAS-DDI’s superior gen-
eralization capabilities under scaffold-based OOD splits. As shown
in Table 2, DyNAS-DDI achieves state-of-the-art performance
on all evaluation metrics, outperforming all baselines from three
categories. Compared to GNN-based approaches and ML-based
methods, DyNAS-DDI achieves an average 10.3% improvement
in accuracy, validating that our dynamic architecture search ef-
fectively adapts to structural distribution shifts in scaffold-based
OOD scenarios. Although accuracy reflects overall generalizability,

our method also shows consistent advantages in other metrics: it
outperforms all baselines by more than 4% in AUC, demonstrating
superior ranking capability for novel scaffolds, and exceeds the
second-best MolTC by an average of 8% in F1-score, indicating a
better precision-recall balance in OOD settings. Even compared
to LLM-based methods that inherently leverage chemical knowl-
edge, DyNAS-DDImaintains an average improvement of 5% in
all metrics, due to our retrieval-augmented instructions that in-
ject domain-specific interaction patterns and dynamic GNN-LLM
coupling that adaptively fuses structural and semantic features.

In particular, our results highlight the stronger advantages of
our method in the more challenging DrugBank dataset, where tra-
ditional machine learning approaches sometimes fail to achieve
meaningful performance in this complex 86-class prediction OOD
scenario. However, our framework demonstrates significantly more
robust performance, demonstrating its superior capability in han-
dling difficult real-world DDI prediction scenarios.
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4.3 Size-based Interaction Results

Unlike scaffold splits that create abrupt discontinuities in chemical
space, size-based divisions maintain partial overlap as molecular
size correlates slightly weaker with chemical reactivity patterns.
This explains the universally observed performance elevation across
all methods, as key pharmacophores may remain recognizable de-
spite size variations. Our approach extends its inherent advantage
across all metrics, allowing a more robust transfer of chemical
knowledge across size boundaries. This advantage is more evident
on the Drugbank dataset, highlighting the robustness of our model
architecture in handling more complex and demanding OOD DDI
scenarios. Specifically, compared to GNN- and ML-based methods,
our DyNAS-DDI demonstrates superior performance across mul-
tiple evaluation metrics, achieving improvements ranging from
approximately 6-8% (minimum) to over 20% (maximum). Moreover,
compared to LLM-based approaches, DyNAS-DDI maintains a
consistent competitive advantage. These results indicate that our
method exhibits strong generalizability across different OOD set-
tings through its adaptive architecture and knowledge-enhanced
molecular reasoning.

4.4 Ablation Study

In this section, we conduct ablation studies to evaluate the impact
of different components on model performance. The experiments
are performed on scaffold-based OOD ChChMiner and Drugbank
datasets using Accuracy and AUC-ROC as the primary evaluation
metrics. Specifically, we evaluate the following variants:
• w/o R-IT: Without Retrieval-augmented Instruction Tuning,
meaning the model is trained directly without the instruction
fine-tuning stage.

• w/o Att: Without Attention-based interaction modeling, where
molecule interactions are modeled using initial encodings in-
stead of attention mechanisms.

• w/oL𝑠𝑠𝑙 : Without Disentangled Motif Embedding, meaning that
self-supervised motif-based disentanglement is removed.

• w/o L𝑐𝑜𝑠 : Without Operation Embedding Space Construction,
meaning the operation vector constraints are removed.

• Handcraft: The entire molecule embedding pipeline is replaced
with a handcrafted GNN-based molecular representation.
The ablation results are summarized in Table 3. According to

the results, our full model achieves the best performance across
both datasets, demonstrating the effectiveness of each component
in handling distribution shifts. Notably, the exclusion of Attention-
based interaction modeling (w/o Att) results in the most significant
decline in accuracy, which indicates its crucial role in capturing
fine-grained pairwise molecular interactions. Furthermore, the per-
formance gap is especially pronounced on Drugbank when using a
handcrafted GNN. This highlights the advantage of our dynamic
pairwise architecture search, which enables better adaptation to
diverse drug-pair patterns and improved generalization.

4.5 Complexity Analysis

For a molecular graph as G = (V, E), let 𝑑𝑧 denote the dimen-
sionality of the self-supervised molecular encoding zG in Section
3.2, and 𝑑ℎ denote the dimensionality of the molecule embedding
hG obtained from the dynamically customized neural network in

Table 3: Ablation study results.

Dataset ChChMiner Drugbank
Accuracy AUC-ROC Accuracy AUC-ROC

Full Model 79.44 87.22 64.86 88.86

w/o R-IT 77.41 86.58 61.77 86.12
w/o Att 72.15 81.38 58.68 86.30
w/o L𝑠𝑠𝑙 73.45 83.62 61.05 87.17
w/o L𝑑𝑖𝑠𝑝 72.68 85.55 61.37 85.30
handcraft 72.57 82.88 52.23 79.81

Section 3.3. We use O to represent the set of candidate operations
in the architecture search space and | · | to indicate the cardinality
of a set. The self-supervised disentangled molecule encoder incurs
a cost of 𝑂 ( |E |𝑑𝑧 + |V|𝑑2𝑧 ). The attention mechanism in interac-
tion modeling introduces an overhead of 𝑂 (𝑑2𝑧 ). For the dynamic
architecture search module, the primary computational burden lies
in computing Ldisp, which requires 𝑂 ( |O|2𝑑𝑧). The customized
super-network performs message passing based on the searched
architecture, contributing a complexity of 𝑂 ( |O|(|E |𝑑ℎ + |V|𝑑2

ℎ
)).

Combining all components, the total complexity of our frame-
work concerning graph modeling becomes 𝑂 ( |E |(𝑑𝑧 + |O|𝑑ℎ) +
|V|(𝑑2𝑧 + |O|𝑑2

ℎ
) + |O|2𝑑𝑧 + 𝑑2𝑧 ), which remains linear in graph size

(V, E). For the LLM part, the reasoning complexity is 𝑂 (𝑁 (𝐿𝑑2
𝑙
+

𝐿2𝑑𝑙 )), where 𝑁 is the number of layers, 𝐿 is the input token length,
and 𝑑𝑙 is the hidden size.

5 Conclusion

In our work, we address the challenge of distribution shifts in
DDI prediction by proposing a novel framework that rethinks how
molecular information is encoded, processed, and adapted. Rather
than relying on static GNN architectures or assuming an I.I.D. set-
ting, our attention-based pairwise architecture search dynamically
adjusts the message-passing strategy for each molecular pair, en-
abling finer-grained modeling of pairwise interactions. The motif-
driven disentangled molecule encoder ensures that core interaction
features are preserved and decoupled from irrelevant structural
noise, while the integration of external biomedical knowledge via
retrieval-augmented molecular instruction tuning provides addi-
tional robustness when reasoning about unseen drug combina-
tions. Through comprehensive evaluations on multiple benchmark
datasets and under realistic OOD splits, we demonstrate consistent
performance gains over existing methods. These findings high-
light the importance of incorporating dynamic, pairwise-aware,
and knowledge-informed mechanisms for building reliable and
generalizable DDI models.
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A Experiment Details

A.1 Datasets

We analyzed the chemical space coverage under two distinct sce-
narios to better understand distribution shifts: (i) Inter-dataset

setting: We selected the test sets from three binary classification
datasets, each following the same splitting strategy, to compare the
feature distributions across different datasets. (ii) Intra-dataset set-
ting: We took ChChMiner as a representative case and compared
the chemical feature distributions between its training and test
splits. For both scenarios, we computed a series of physicochemical
descriptors for each compound, as summarized in Table 4.

Table 4: Molecular descriptors used in this study and their

definitions

Descriptor Definition

MW Molecular weight of the compound
LogP Octanol-water partition coefficient (logP),

indicating lipophilicity
HBD Number of hydrogen bond donors
HBA Number of hydrogen bond acceptors
TPSA Topological polar surface area,

related to drug absorption
RotBonds Number of rotatable bonds,

representing molecular flexibility
AromaticRings Number of aromatic rings
HeavyAtoms Number of heavy (non-hydrogen) atoms
FractionCSP3 Fraction of carbon atoms with sp3 hybridization
RingCount Total number of rings in the molecule

We applied t-SNE for dimensionality reduction on the full set of
computed molecular descriptors. The resulting two-dimensional
embeddings are illustrated in Figure 3. In the inter-dataset setting,
the ChChMiner samples are distributed distinctly from those of
ZhangDDI and DeepDDI, whereas the latter two exhibit a more sim-
ilar distribution in the chemical space. In contrast, the intra-dataset
setting clearly demonstrates the distributional shift between the
training and test sets of ChChMiner. This validates the effectiveness
of our out-of-distribution (OOD) dataset splitting strategy.

ChChMiner
DeepDDI
ZhangDDI

Train
Test

Inter-Dataset Distribution Shifts Intra-Dataset Distribution Shifts

Figure 3: t-SNE visualization of molecular features derived

from physicochemical descriptors across multiple datasets.

This figure illustrates both inter-dataset and intra-dataset

distribution shifts.

A.2 Prompt Example

To better illustrate the textual content involved in our training
process, including prompts and instructions, and to highlight the
potential clinical interpretability, we provide a representative ex-
ample from a multi-class classification task used during training,
as shown in Figure 4.
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Backbone prompt:
The first drug is 
[START_SMILES]OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl[END_SMILES]<Embed1>
The second drug is 
[START_SMILES]CCN1C=C(C(O)=O)C(=O)C2=CC(F)=C(C=C12)N1CCN(C)CC1[END_SMILES]<Embed2>

Input prompt:  What are the descriptions of the two 
drugs? 

Target answer:  #Drug1 is Diclofenac. Diclofenac is 
an NSAID used to treat the signs and symptoms of 
osteoarthritis and rheumatoid arthritis. #Drug2 is 
Pefloxacin. Pefloxacin is an antibiotic used to treat 
a variety of bacterial infections.

Instruction Tuning Stage

Input prompt:  What is the drug-drug interac-
tion of the two drugs?

Target answer: <CAT47> The metabolism of 
#Drug1 can be decreased when combined with 
#Drug2.

Multi-class Classification Training Stage

Figure 4: One qualitative prompt example.

A.3 Retrieval Implementation

In our implementation, we employ a curated retrieval strategy to
ensure the quality and consistency of drug-related knowledge used
during instruction tuning and inference. Specifically, we construct
a drug-description database through the following steps:
• MetadataCollection:We crawl drugmetadata fromDrugBank,
focusing on entries under the IDENTIFICATION section. The
Summary field is selected as the primary textual description for
each drug due to its concise and informative nature.

• Manual Verification: For a small subset of drugs without
well-structured metadata, we manually retrieve and verify de-
scriptions from reputable biomedical sources to maintain infor-
mation quality.

• Database Construction: All processed drug descriptions are
compiled into a local database, indexed by DrugBank IDs. This
database is used during both training and inference for consis-
tent retrieval of drug information.
Because our knowledge source is strictly confined to DrugBank

and manually verified texts, the resulting retrieval process is highly
reliable. Moreover, indexing by DrugBank ID ensures consistency
across all mentions of the same drug. The final retrieval database
occupies 25.4 MB of disk space.

B More Results

B.1 Hyperparameter Sensitivity

We conducted a comprehensive analysis to investigate how sev-
eral key hyperparameters influence the final performance of our
dynamic NAS model. The first three groups of experiments were
conducted on the ChChMiner dataset, while the last group was
performed on the DrugBank dataset. The hyperparameters studied
include:
• Number of operational prototypes per layer: values tested
were 2, 4, and 6.

• Dispersion loss factor 𝛼 (in Ldisp): values tested were 0.0,
0.001, 0.005, 0.01, and 0.1.

• Self-supervised loss factor 𝛽 (in Lssl): values tested were 0.0,
0.001, 0.005, 0.01, and 0.1.

• Length of retrieval prompt: values tested were 9, 12, and 15
words.
For the retrieval prompt length, we also aimed to examine the

effect of different prompt styles on model performance. Specifically,
we designed the following variations:

• P1: What is the drug-drug interaction of the two drugs?
• P2: Classify the interaction between the two drugs by its primary
pharmacological mechanism.

• P3: As a pharmacovigilance officer, how would you classify the
interaction between the two drugs?

The results are shown in Figure 5. From the experimental re-
sults, we observed clear and consistent trends regarding the impact
of each hyperparameter on the model’s predictive performance.
First, increasing the number of prototypes per layer from 2 to 6
led to a steady improvement in performance. This suggests that a
richer prototype space enhances the model’s representational ca-
pacity. The effect of the L𝑑𝑖𝑠𝑝 factor 𝛼 demonstrated a sweet spot
around 𝛼 = 0.005, where the model achieved its highest accuracy
and near-peak AUC-ROC. Smaller values still provided substan-
tial gains, while excessive regularization degraded performance.
Meanwhile, tuning the L𝑠𝑠𝑙 factor 𝛽 revealed a similar trend: per-
formance peaked at 𝛽 = 0.005, beyond which both accuracy and
AUC-ROC declined. This suggests that self-supervised contrastive
regularization is effective in improving generalization when bal-
anced appropriately but may introduce noise when overemphasized.
In our main experiments, we adopted the following hyperparameter
configuration: the number of prototypes per layer was set to 6, and
both the 𝛼 and 𝛽 factors were set to 0.005.

Finally, we analyzed the effect of prompt length on model per-
formance. Increasing the prompt length from 9 to 12 words led to a
noticeable improvement in both accuracy and AUC-ROC, indicating
that moderately enriched instructions provide more informative
guidance to the model. However, extending the prompt further to
15 words resulted in only marginal gains in AUC-ROC and a slight
decrease in accuracy, suggesting diminishing returns and potential
semantic redundancy. Despite these variations, the model main-
tains consistently strong performance across different instruction
lengths, demonstrating its robustness and ability to generalize well
across stylistic variations in prompts.
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Figure 5: Hyperparameter sensitivity analysis.
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B.2 Failure Cases

Despite the overall strong performance of our model, a detailed
error analysis reveals several areas where prediction remains chal-
lenging. Understanding these failure cases is crucial for guiding
future improvements and addressing model limitations under real-
world constraints. We categorize the primary types of failure into
two broad groups:

Extremely Rare Categories. Certain interaction types, such as
<CAT18> (#Drug1 can cause an increase in the absorption of #Drug2
resulting in an increased serum concentration and potentially a wors-
ening of adverse effects) and <CAT02> (#Drug1 may increase the an-
ticholinergic activities of #Drug2), each occur only once in the test
set, with frequencies below 0.1%. These ultra-rare categories pose
significant challenges in a multi-class classification setting. In con-
trast, slightly more frequent types such as <CAT22> and <CAT26>,
which appear twice in the test set, still achieve a 50% prediction
accuracy.

Extreme Molecular Heterogeneity. In our out-of-distribution split-
ting scenario, predictions failed for drug pairs such as [Cl-].[Cl-].
[Ca++] and [Na+].OP(O)([O-])=O. These compounds exhibit high-
ly atypical molecular structures, lacking well-defined scaffolds and
diverging significantly from the predominantly organic compounds
seen during training.

These failure cases underscore the challenges of learning under
extremely imbalanced class distributions and the limitations of
motif-based representations in capturing highly heterogeneous
molecular forms.

B.3 Time Cost

To analyze the time cost of our method compared with other LLM-
based approaches, we conduct experiments on ChChMiner and
DrugBank under the scaffold split setting. For training, we report
the average runtime per epoch. For inference time, we measure
the total time required to complete inference on the entire test
set after training. As shown in Figure 6, our method exhibits ap-
proximately a 10% increase in training time cost. This additional
cost is accompanied by a notable gain in accuracy, suggesting that
the extra computational investment contributes meaningfully to
model performance. In terms of inference, our method achieves
comparable latency to mainstream baselines, demonstrating that
the architectural enhancements do not introduce runtime overhead
during deployment.

B.4 Memory Consumption

We analyzed the peak memory usage of our proposed method in
comparison to several representative LLM-based approaches under
a single-GPU setting. All experiments were conducted with a fixed
batch size of 4 on the DrugBank dataset.

Thememory consumption of eachmodel during both fine-tuning
and inference stages is shown in Table 5. The results show that
DyNAS-DDI supports full training and inference on a single 24GB
GPUwithmemory consumption comparable to othermodels. Specif-
ically, during fine-tuning,DyNAS-DDI consumes around 22.9–23.4GB,
similar to Galactica and MolTC, indicating efficient training even
with the added NAS module. For inference, DyNAS-DDI uses
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Figure 6: Experimental time cost.

7.34GB, slightly higher than Galactica and MolTC but still well
within practical limits. This demonstrates that DyNAS-DDI bal-
ances performance and efficiency, making it suitable for deployment
on standard hardware.

Table 5: Peak memory usage (MB) of different models during

finetuning and inference.

Model Finetuning (MB) Inference (MB)

Galactica 22828 6866
MolT5 13094 1418
MolTC 23824 6608
DyNAS-DDI (R-IT) 22992
DyNAS-DDI (Train) 23386 7340

DyNAS-DDI (w/o NAS) 22926

C Discussion

Our proposed disentangle–search–augment framework is inher-
ently domain-agnostic and demonstrates strong potential for ex-
tension to multimodal retrieval tasks, such as image-text or video-
text retrieval. Specifically, its three core components exhibit cross-
domain adaptability: (i) The Motif-driven disentangled molecule en-
coding mechanism can be generalized to visual modalities, such as
scene graphs or region proposals, where disentangling semantically
meaningful patterns from noisy or entangled visual/textual features
is equally crucial. This allows the model to isolate informative sub-
structures in a way analogous to molecular motif extraction. (ii)
The Attention-based pairwise neural architecture search serves as a
flexible optimization paradigm for discovering dynamic reasoning
pathways. In multimedia settings, it can be employed to adaptively
search for optimal cross-modal fusion strategies, which is particu-
larly advantageous in tasks such as image-text retrieval or video
question answering, where static fusionmechanisms often fall short
in performance. (iii) The Retrieval-augmented molecular instruction
tuning component offers a general strategy for integrating external
knowledge into the model’s reasoning process. In multimodal con-
texts, retrieval prompts can be derived from structured metadata,
such as image tags, scene descriptions, or video transcripts, to guide
cross-modal alignment and enhance semantic understanding.
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